图的习题

2023-07-15 0 1,299

结构体定义

//定义 
//邻接矩阵
typedef struct MGraph{
	char vex[MAXSIZE];
	int edge[MAXSIZE][MAXSIZE];
	int vexnum,edgenum;
}MGraph;
//带权重的邻接矩阵
struct MGraphW{
	//储存的顶点表 
	char vex[MAXSIZE];
	//路径矩阵,只不过改成权重了 
	int weight[MAXSIZE][MAXSIZE];
	//存储顶点与边的个数
	int vexnum,arcnum;
};
//邻接表
typedef struct ArcNode{
	int adjvex,weight;
	struct ArcNode *next;
}ArcNode; 
typedef struct VNode{
	char value;
	ArcNode *first;
}VNode,AdjList[MAXSIZE];
typedef struct{
	AdjList vertices;
	int vexnum,arcnum;
}ALGraph;

习题

//邻接矩阵->邻接表
ALGraph MGToALG(MGraph g){
	ALGraph ag;
	ag.vexnum = g.vexnum;
	ag.arcnum = g.edgenum;
	ArcNode *p,*q;
	for(int i=0;i<g.vexnum;i++){
		ag.vertices[i].value = g.vex[i];
		ag.vertices[i].first = NULL;
		for(int j=0;j<g.vexnum;j++){
			if(g.edge[i][j]!=0){
				q = (ArcNode*)malloc(sizeof(ArcNode));
				q->adjvex = j;
				q->next = NULL;
				if(ag.vertices[i].first == NULL){
					ag.vertices[i].first = q;
					p = q;
				}else{
					p->next = q;
				    p = q;
				}
			}	
		}
	}
	return ag;
} 
//邻接表->邻接矩阵
MGraph ALGToMG(ALGraph a){
	MGraph g;
	g.edgenum = a.arcnum;
	g.vexnum = a.vexnum;
	ArcNode *p;
	int v;
	for(int i=0;i<g.vexnum;i++){
		for(int j=0;j<g.vexnum;j++){
			g.edge[i][j] = 0;
		}
	}
	for(int i=0;i<a.vexnum;i++){
		g.vex[i] = a.vertices[i].value;
		p = a.vertices[i].first;
		while(p){
			v = p->adjvex;
			g.edge[i][v] = 1;
			p = p->next;
		}
	}
	return g;
}  
//2012统考真题,是否存在EL路径
int isExistEL(MGraph G){
	int degree,i,j,count = 0;
	for(i=0;i<G.vexnum;i++){
		degree = 0;
		for(j=0;j<G.vexnum;j++){
			if(G.edge[i][j]!=0)degree++;
		}
		if(degree%2!=0)count++;
	}
	if(count==0 || count==2)return 1;
	else return 0;
}
//(不熟) 广度优先搜索 - 邻接矩阵
void BFSM(MGraph G,int v,int visited[]){
	int Queue[MAXSIZE],rear = -1,front = -1;
	printf("%c",G.vex[v]);
	Queue[++rear] = v;
	visited[v] = 1;
	while(rear!=front){
		v = Queue[++front];
		for(int i=0;i<G.vexnum;i++){
		   if(G.edge[v][i]!=0 && visited[i]==0){
		   	    printf("%c",G.vex[i]);
		   	    visited[i] = 1;
		    	Queue[++rear] = i;
		   }
	    }
	}
	
}
void BFSMGraph(MGraph G){
	int visited[G.vexnum];
	for(int i=0;i<G.vexnum;i++){
		visited[i] = 0;
	}
	for(int i=0;i<G.vexnum;i++){
		if(!visited[i])BFSM(G,i,visited);
	}
}
//(不熟) 广度优先搜索 - 邻接表
void BFSALG(ALGraph G,int v,int visited[]){
	int Queue[G.vexnum],rear = -1,front = -1,vex;
	printf("%c",G.vertices[v].value);
	ArcNode *p = G.vertices[v].first;
	visited[v] = 1;
	Queue[++rear] = v;
	while(rear != front){
		v = Queue[++front];
		p = G.vertices[v].first;
		while(p){
			vex = p->adjvex;
			if(!visited[vex]){
				Queue[++rear] = vex;
				printf("%c",G.vertices[vex].value);
				visited[vex] = 1;
			}
			p = p->next;
		}
	}
}
void BFSALGraph(ALGraph G){
	int visited[G.vexnum];
	for(int i=0;i<G.vexnum;i++){
		visited[i]=0;
	}
	for(int i=0;i<G.vexnum;i++){
		if(!visited[i])BFSALG(G,i,visited);
	}
}
//深度优先搜索 -- 邻接矩阵 
void DFSMG(MGraph G,int v,int visited[]){
	visited[v] = 1;
	printf("%c",G.vex[v]);
	for(int i=0;i<G.vexnum;i++){
		if(G.edge[v][i]!=0 && visited[i]==0){
			DFSMG(G,i,visited);
		}
	}
} 
void DFSMGraph(MGraph G){
	int visited[G.vexnum];
	for(int i=0;i<G.vexnum;i++){
		visited[i]=0;
	}
	for(int i=0;i<G.vexnum;i++){
		if(!visited[i])DFSMG(G,i,visited);
	}
}
//深度优先搜索 -- 邻接表
void DFSALG(ALGraph G,int v,int visited[]){
	visited[v] = 1;
	printf("%c",G.vertices[v].value);
	ArcNode *p = G.vertices[v].first;
	while(p){
		v = p->adjvex;
		if(!visited[v])DFSALG(G,v,visited);
		p = p->next;
	}
}

void DFSALGraph(ALGraph G){
	int visited[G.vexnum];
	for(int i=0;i<G.vexnum;i++){
		visited[i]=0;
	}
	for(int i=0;i<G.vexnum;i++){
		if(!visited[i])DFSALG(G,i,visited);
	}
}
//判断无向图是否是一棵树
//思路:DFS遍历图,要想无向图是一棵树,则顶点数加一等于边数 
//辅助DFS函数 
void DFSTU(ALGraph G,int v,int &node,int &edge,int visited[]){
	visited[v] = 1;
	node++;
	ArcNode *p = G.vertices[v].first;
	while(p){
		edge++;
		int k = p->adjvex;
		if(!visited[k])DFSTU(G,k,node,edge,visited);
		p = p->next;
	}
	
}

int isTree(ALGraph G){
	int visited[G.vexnum];
	for(int i=0;i<G.vexnum;i++){
		visited[i]=0;
	}
	int node=0,edge=0;
	DFSTU(G,0,node,edge,visited);
	if(node == G.vexnum && G.vexnum*2-1 == edge)return true;
	else return false;
}
//(不熟)深度优先的非递归算法
void DFSALGN(ALGraph G,int v,int visited[]){
	printf("%c",G.vertices[v].value);
	int Stack[MAXSIZE],top = -1,k;
	ArcNode *p;
	Stack[++top] = v;
	while(top!=-1){
		v = Stack[top];
		p = G.vertices[k].first;
		while(p){
			k = p->adjvex;
			if(!visited[k]){
				visited[k] = 1;
				printf("%c",G.vertices[k].value);
				Stack[++top] = k;
				break; 
			}
			p = p->next;
		}
		if(!p)top--;
	}
}
//广度判断图中是否存在i到j的路径
bool isExistPath(ALGraph G,int i,int j){
	int visited[G.vexnum],k;
	for(int t=0;t<G.vexnum;t++){
		visited[t] = 0;
	}
	int Queue[MAXSIZE],rear = -1,front = -1;
	Queue[++rear] = i;
	visited[i] = 1;
	while(rear!=front){
	  i = Queue[++front];
	  ArcNode *p = G.vertices[i].first;
	  while(p){
	  	k = p->adjvex;
	  	if(!visited[k]){
		  if(k == j)return true;
	  	  visited[k] = 1;
	  	  Queue[++rear] = k;
	    }	
	    p = p->next;
	  }
	}
	return false;
} 
//深度优先实现上述算法
void isExistPathByDFS(ALGraph G,int i,int j,bool &exist,int visited[]){
	if(i == j)exist =true;
	visited[i] = 1;
	ArcNode *p = G.vertices[i].first;
	while(p){
		int k = p->adjvex;
		if(!visited[k]){
			isExistPathByDFS(G,k,j,exist,visited);
		}
		p = p->next;
	}
}

bool isExistPathBD(ALGraph G,int i,int j){
	int visited[G.vexnum];
	for(int k=0;k<G.vexnum;k++){
		visited[k] = 0;
	}
	bool is = false;
	isExistPathByDFS(G,i,j,is,visited);
	return is;
}
//输出从i到j的所有简单路径 
void printAlliToJPath(ALGraph G,int i,int j,int &deep,int path[],int visited[]){
	visited[i] = 1;
	path[deep] = i;
	deep++;
	if(i == j){
		for(int i=0;i<deep;i++){
			printf("%c ",G.vertices[i].value);
		}
	}
	ArcNode *p = G.vertices[i].first;
	while(p){
		int k = p->adjvex;
		if(!visited[i])printAlliToJPath(G,k,j,deep,path,visited);
		p = p->next;
	}
	visited[i] = 0;
} 
//BFS (不熟)求解单源最短路径 (不带权)
void getMinPathByBFS(ALGraph G,int v,int dis[],int path[],int visited[]){
	for(int i=0;i<G.vexnum;i++){
		visited[i] = 0;
		dis[i] = INF;
		path[i] = -1;
	}
	dis[v] = 0; 
	int Queue[G.vexnum],rear = -1,front = -1,k;
	Queue[++rear] = v;
	while(rear!=front){
		v = Queue[++front];
		ArcNode *p = G.vertices[v].first;
		while(p){
			k = p->adjvex;
			if(!visited[k]){
				dis[k] = dis[v] + 1; 
				path[k] = v;
				visited[k] = 1;
				Queue[++rear] = k;
			}
			p = p->next;
		}
	}
}
//(不熟)迪杰斯特拉算法(求最短路径) 
void Dijkstra(ALGraph G,int v,int dis[],int path[],int visited[]){
	for(int i=0;i<G.vexnum;i++){
		visited[i]=0;
		path[i] = -1;
		dis[i] = INF;
 	}
 	visited[v] = 1;
 	dis[v] = 0;
 	path[v] = 0;
 	ArcNode *p = G.vertices[v].first;
 	int k,min,minindex;
 	while(p){
 	  	k = p->adjvex;
 	  	dis[k] = p->weight;
 	  	path[k] = v;
 	  	p = p->next;
	}
	for(int i=0;i<G.vexnum-1;i++){
		min = INF;
		for(int j=0;j<G.vexnum;j++){
			if(min>dis[j]){
				min = dis[j];
				minindex = j;
			}
		}
		visited[minindex] = 1;
		p = G.vertices[minindex].first;
		while(p){
			k = p->adjvex;
			if(!visited[k] && dis[k] > p->weight + dis[minindex]){
				dis[k] = p->weight + dis[minindex];
				path[k] = minindex;
			}
			p = p->next;
		}
	}
}
//弗洛伊德算法
void Floyd(MGraph G,int a[][],int path[][]){
	for(int i=0;i<G.vexnum;i++){
		for(int j=0;j<G.vexnum;j++){
			a[i][j] = G.edge[i][j];
			path[i][j] = -1;
		}
	}
	for(int k=0;k<G.vexnum;k++){
		for(int i=0;i<G.vexnum;i++){
			for(int j=0;j<G.vexnum;j++){
				if(a[i][j]> a[i][k] + a[k][j]){
					path[i][j] = k;
					a[i][j] = a[i][k]+a[k][j];
				}
			}
		} 
	}
} 
//得到所有节点的入度
void getAllNodesIndegree(ALGraph G,int indegree[]){
	for(int i=0;i<G.vexnum;i++){
		ArcNode *p = G.vertices[i].first;
		while(p){
			int k = p->adjvex;
			indegree[k]++;
			p = p->next;
		}
	}
}

//(不熟)拓扑排序,判断有向连通图是否有环
bool isCricle(ALGraph G){
	int stack[MAXSIZE],top=-1,indegree[MAXSIZE],toSequence[MAXSIZE],count=0,v;
	for(int i=0;i<G.vexnum;i++){
		indegree[i] = 0;
	}
	getAllNodesIndegree(G,indegree);
	for(int i=0;i<G.vexnum;i++){
		if(indegree[i]==0)stack[++top] = i;
	}
	while(top!=-1){
		v = stack[top--];
		toSequence[count++] = v;
		ArcNode *p = G.vertices[v].first;
		while(p){
			int k = p->adjvex;
			if((--indegree[k]==0)){
				indegree[k]--;
				stack[++top] = k;
			}
			p = p->next;
		} 
		for(int i=0;i<G.vexnum;i++){
			printf("%c",G.vertices[toSequence[i]].value);
		}	
	}
	return G.vexnum == count;
}
//逆拓扑排序
void reverseTopo(ALGraph G,int v,int i,int visited[],int sequence[]){
	visited[v] = 1;
	ArcNode *p = G.vertices[v].first;
	while(p){
		int k = p->adjvex;
		if(!visited[k]){
			i++;
			reverseTopo(G,k,i,visited,sequence);
		} 
		sequence[i] = k; 
		p = p->next;
	}
}
//(不熟)i到j之间长度为length的路径
void printLengthPath(ALGraph G,int i,int j,int length,int d,int path[],int visited[]){
	path[d] = i;
	if(d == length && i==j){
		for(int x=0;x<length;x++){
			printf("%c ",G.vertices[x].value);
		}
	}
	visited[i] = 1;
	ArcNode *p = G.vertices[i].first;
	while(p){
		int k = p->adjvex;
		if(!visited[k]){
			d++;
		    printLengthPath(G,k,j,length,d,path,visited);
		}
		p = p->next;
	} 
	visited [i] = 0;
}
//求解i到j之间长度最长的路径 边带权
void getLengthPath(ALGraph G,int i,int j,int length,int d,int path[],int visited[],int max,int maxpath[]){
	path[d] = i;
	if(length > max && i == j){
		max = length;
		for(int x=0;x<d;x++){
			maxpath[x] = path[x];
		}
	}
	visited[i] = 1;
	ArcNode *p=G.vertices[i].first;
	while(p){
		int k = p->adjvex;
		if(!visited[k]){
			d++;
			length = length + p->weight;
			getLengthPath(G,k,j,length,d,path,visited,max,maxpath);
			p = p->next;
		}
	}
	visited[i] = 0;
}
//判断有向图内是否有根节点 
//思路:深度优先搜索走了一遍,且节点个数等于深搜的节点数,那么整个图无额外的连同向量,必有根节点
void DFSR(ALGraph G,int v,int visited[],int &count){
	visited[v] = 1;
	ArcNode *p = G.vertices[v].first;
	while(p){
		int k = p->adjvex;
		if(!visited[k]){
			count++;
			DFSR(G,k,visited,count);
		}
		p = p->next;
	}
} 

bool isRoot(ALGraph G){
	int visited[G.vexnum];
	for(int i=0;i<G.vexnum;i++){
		visited[i] = 0;
	}
	int count = 0;
	for(int i=0;i<G.vexnum;i++){
		DFSR(G,i,visited,count);
    	if(count==G.vexnum)return true;
	}
	return false;
}
收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (1)

本站部分资源收集自互联网,我站仅分享内容,仅供用户个人研究,不提供商业使用,如有侵权下架处理,觉得资源内容不错请您在官方渠道购买正版,您在阅读的同时下载的内容本站不承担任何法律责任!Some resources of this website are collected from the Internet. We only share the content, which is only for personal research of users, and not for commercial use. If there is infringement and off shelf processing, please purchase the authentic version of the resource content from the official channel if you think it is good. We will not bear any legal responsibility for the content you download while reading!

橙凰素材 学习交流 图的习题 https://b.bqzmz.com/2023/07/15/%e5%9b%be%e7%9a%84%e4%b9%a0%e9%a2%98/

一名苦逼的程序员

常见问题
  • 正版主题是指站长在指定渠道购买的官方主题,提供作者联系,资源支持,长期更新等等内容
查看详情
  • 非常抱歉,请联系网站页脚的客服,我们将在核实后下架处理并返还给您此资源的收益(会扣去网站运营的费用),谢谢理解!
查看详情
  • 网络资源是站长从互联网分享收集而来的内容,本站不会做测试,直接分享,不包源码可用性,运营性,如有需求点击右边的联系正版,谢谢!
查看详情
  • 如果资源不是最新版本,请在资源下方评论区进行催更或提交工单处理,我们会尽快更新并通过邮箱通知您。
查看详情

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务